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Abstrac~A simplified model of one particular thermistor is presented and an approximate functional 
solution for the evolving coupled thermo-electric problem is obtained by an application of the heat balance 
integral melhod. The solution is shown to exhibit all the correct physical characteristics and this simple 

model extracts a mechanism by which the observed cracking of these devices might be initiated. 

1. INTRODUCTION 
The thermistor is a ceramic thermo-electric device 
which may form one element of an electric circuit. The 
basis for its operation is an electrical conductivity G 
that is a highly non-linear function of the temperature 
T, typically decreasing by five orders of magnitude as 
the temperature rises over a relatively small critical 
range, say 100-200°C. This is a positive temperature 
coefficient device tPTC). The behaviour of G makes 
the thermistor useful in many areas some of which are 
thermometry, the measurement of microwave-fre- 
quency power, thermal relays and control devices acti- 
vated by changes in temperature such as a current- 
surge protector [l]. Comprehensive details of the 
properties, operation and applications of the PTC 
thermistor are awilable in the literature [1, sections 
9-12] and here we limit ourselves to a schematic 
description of its behaviour. 

The current flowing through the device drives 
internal Joule heating. From Ohm's law, a larger cur- 
rent produces greater heating and so an enhanced 
temperature increase in certain regions of the device. 
In this way, more of the ceramic material rises above 
the critical temperature range (the hot region) and the 
bulk electrical conductivity falls. There is a subsequent 
decrease in the current flowing through the device 
which in turn reduces the Joule heating. At some point 
a thermal equilibrium is attained in which the heating 
is balanced by the loss of heat at the surface of the 
device. Gelder and Guy [2] discuss the opposite case 
of low resistivity at higher temperatures and inves- 
tigate the use of certain glass products in thermal 
switching devices. 

During the last five years or so considerable interest 
has been shown in the thermistor, much of which has 
been motivated by the fact that, during their oper- 
ation, these devices have been observed to develop 
cracks. This is likely to affect their operational behav- 
iour and one obvious hypothesis is that large heat 
fluxes occur during the working life of the device. 
There is conflicting evidence of this. Veen's [3] numeri- 
cal experiments displayed no such high fluxes. 

However, under certain conditions, the resistivity of 
the device can combine with the resistance of the exter- 
nal circuit to produce temperature surges within the 
device [4, 5]. The resulting thermal stresses may induce 
cracking. 

Of practical interest is a knowledge of the evolution 
of the moving boundary separating the hot region 
from the cold region (below the critical temperature). 
It is the purpose of this paper to construct and assess 
a simple functional approximation for tracking the 
moving boundary and the associated thermo-electric 
distributions. For the thermal problem there is a fairly 
small but detailed reference list. Diesselhorst [6] gave 
proofs for the existence and uniqueness of solutions 
for the problem consisting of isothermal/isopotential 
conditions on the upper and lower faces with thermo- 
electric insulation at the sides of the device. Howison 
[7] constructed some order results for the size of the 
hot region and showed [8] that the results were essen- 
tially independent of the geometry of the device. Cim- 
atti [9] completed the uniqueness proof, giving a classi- 
cal solution, and in an earlier paper [10] obtained an 
upper bound for the temperature in the case of uni- 
form Dirichlet boundary conditions on the entire sur- 
face of the device. 

More realistically the surface of the device admits 
Robin's thermal boundary conditions and Westbrook 
[11] used an iterative method based on finite elements 
to obtain numerical results for the isotherm locations 
and field lines in the steady-state situation. The thin 
hot strip lying in a radial direction at the centre of 
the device, produced by his scheme, agreed with the 
previous order analysis [7]. A numerical process to 
follow the evolving thermal profile in a one-dimen- 
sional analogue has been summarised [12] as has inter- 
action with an external circuit [3]. 

The heat balance integral solution presented in this 
paper not only exhibits all the correct physical charac- 
teristics of the problem but, in addition, correctly pre- 
dicts the physical a priori conditions defining the 
steady-state configurations [11]. Although the problem 
of crack propagation is not addressed, we do show 
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NOMENCLATURE 

Biot number A T 
Young's modulus [N m 2] e 
electrical conductivity [S] ~c 
dimensionless electrical conductivity 2 
thermistor half length [m] v 
hot-cold interface location [m] ~r 
dimensionless hot-cold interface r 
location 
temperature [°C] q5 
dimensionless time ~o 
dimensionless temperature 
applied potential difference [V] 
axial distance [m] 
dimensionless axial distance. 

Greek symbols 
surface heat transfer coefficient 
[ W  m - 2  K- ' ]  

y coefficient of thermal expansion [K ~] 
6 scale factor for electrical conductivity 

temperature difference To- Ta [K] 
scale factor for electrical conductivity 
thermal diffusivity [m 2 s- ' ]  
thermal conductivity [W m -~ K - q  
Poisson's ratio 
tensile strength [N m 2] 
time [s] 
electric potential [V] 
dimensionless electric potential 
ratio of heating terms. 

Subscripts 
0 end of cold phase 
1 end of warm phase 
a ambient (air) value 
c critical (switching) value. 

Superscript 
* steady-state value. 

that rates of temperature change commensurate with 
crack-inducing thermal stresses can take place at inter- 
vals during the process evolution. 

2. STATEMENT OF THE PROBLEM 

We assume a right-circular cylindrical form for the 
device. Current flow is driven by applying a potential 
qb = _ V at the upper and lower (plane) faces. If the 
curved sides are electrically insulated then current 
flows in the axial direction only. The internal Joule 
heating causes heat to flow towards the edges where 
it is liberated to the surrounding medium (air). If the 
curved sides of the device are also perfectly insulated 
with respect to heat flow then the entire thermo-elec- 
tric problem is one-dimensional in the axial direction. 
Heat loss at the upper and lower faces is identical and 
so, about the centre point, there is symmetry in T and 
skew-symmetry in O. Introducing the dimensionless 
variables 

T--T~ Y S 
U =  A ~ T - '  Y = I '  S = l '  

Kz • G 
t =  7 ,  4 ~ = ~  and g=Gaa 

then we need only consider the dimensionless region 
0~<y~<l.  

2.1. Heat  f low 
The temperature U is governed by the diffusion 

equation 

&U ~2U /~\2 

The second term on the right-hand side of (t) 
represents the effect of Joule heating in which 
co = GaV2/2ATis  a dimensionless quantity expressing 
the ratio of electric heating to heat conduction and g 
is temperature dependent and initially (t = 0) equals 
1. To model its non-linear behaviour we assume that 
above some unique critical temperature, U~ = 1, its 
value drops to 6 where, typically, 6 = 10 -5. Thus, 

1, 0 ~< U~< 1, (2a) 
g(U)  = 3, U >  1. 

In a postscript, Howison [7] notes that the step func- 
tion is not the most realistic model for g and that an 
exponential rule, of the form 

1, 0 ~ < U ~ I  

f(u) = U 1 < U <  I + A U  (2b) 
[1_ - 1 '  U > ~ l + A U  

is more appropriate where, typically, g ~ 10-' and 
AU = 1. This point is also asserted in [1, pp. 178-182]. 
However, for the step function, we can generate a 
functional solution to the thermistor problem rela- 
tively easily, which we shall compare with a numerical 
solution of the full problem using the definitions 
in (2b). 

The initial temperature of the device equals the 
ambient (air) temperature, 

U ( y , O ) = O ,  0~<y~< 1 (3) 

by symmetry the plane y = 0 has no heat flow across 
it, 
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Fig. 1. Steady-state configurations. 

OU 
~3y 0, y 0, t > 0  (4) 

and at y = 1 heat is lost to the surroundings, 

OU 
3y + Bi U = O, t > 0  (5) 

in which Bi = M/2 is a Biot number. For  the given 
initial conditions in equation (3) and with Bi > 0, we 
assume monotonicity of the temperature profile such 
that the point  y := 0 will always be the hottest and 
will be the first point to reach the temperature Uc. 
Ultimately the rate of heat loss at y = 1 will equal the 
rate of internal heat generation and equilibrium will be 
attained which may be any one of the three scenarios 
shown in Fig. 1. 

During the warm phase there are two distinct 
regions, i.e. a hot region 0 ~< y ~< s* (at a temperature 
above Uo) of low electrical conductivity separated by a 
free boundary  s* from a cold region (at a temperature 
below U~) of high ,electrical conductivity. The evolving 
problem defined by equations (1)-(5), using the step 
condit ion (2a), will move sequentially through the 
cold, warm and hot phases (if at all). Three distinct 
phases are observable, each having a slightly different 
model. 

2.2. Current f low 
Coupled with the evolving temperature is an 

implicitly time dependent potential ~b, initially 
assumed to have: the profile q~(y,0)= y and sub- 
sequently governed by 

o ( 04,~ 
~ y t g ~ T y ) = O ,  O < y <  1, t > O  (6) 

(7) 

(8) 
05(0, t) = 0, t > 0  

0 ( 1 , t ) =  1, t > 0 .  

3. AVAILABLE SOLUTIONS 

Equations (6)-(8) can be solved exactly for the three 
phases and the ultimate problem is to track the evolv- 
ing temperature profiles. 

3.1. Coldphase: 0 ~< t ~< to 
The entire region is at a temperature no greater 

than Uc and so g = 1. Hence qS(y,t) = y, 0 ~<y ~< 1, 
Oc~/~y = 1 and equation (1) becomes 

aU O2 U 
- - + 0 9 ,  0 < y < l  (9) 

t?t dy2 

supplemented by the conditions (3)-(5). Equation (9) 
has the exact solution 

I 1 
U(y,t)  = o)(~+ if//. - ~ )  

COS (#nY) " 
-- 2eg Bi /_., x~ 2 2 . 2 e - ~ , ? ~ t ,  

= ~ #. [ix. + (Bt) + Bi] cos #n 

0 ~ < y ~ < l ,  t~>0 (10) 

in which the #, are the positive roots of 
l ~ t a n l t - B i  = 0 [13]. Equation (10) may be used to 
assess the heat balance solution during the cold phase. 
At a time to, the value of U(0, t) reaches Uc and the 
domain 0 ~< y ~< 1 splits into two regions. 

3.2. Warm phase: to < t ~< t~ 
There is now a hot region, 0 ~< y < s(t), at a tem- 

perature above Uc and a cold region, s(t) <~ y <~ 1, 
at a temperature no greater than Uc. The moving 
boundary s(t) separates these two regions and equa- 
tion (2a) defines the electrical conductivity within 
them. 

3.2.1. Hot region: 0 ~< y ~< s(t). The solution to 
equation (6), subject to condit ion (7) and ~b(s, t) = (~, 
is 

d p ( y , t ) = ~ Y ,  O < . y ~ s ( t )  ( l l )  
s 

where q$ is the value of the potential at y = s(t). 
Further, Odp/Oy = dp/s,9 = 3 and equation (1) becomes 

~U c~2U ((o)2 
+e)~ 0 < < s(t) (12) ay 2 s ' Y at 

subject to 

0U 
( ~ y - 0 a t y = 0  and U =  l a t y = s ( t ) .  (13) 

The initial condit ion for equation (12) is obtained 
from the spatial distribution of U, arising from equa- 
tion (10), at time to. 

3.2.2. Cold region : s(t) ~< y ~< 1. The solution to 
equation (6), subject to q~(s, t) = q~ and condit ion (8), 
is 

y ( 1 - & + 6 - s  
49(y,t) = 1--s , s(t) ~ y ~< 1. (14) 

Thus, aq~/Oy = (1 -q~)/(1 - s ) ,  g = 1 and equation (1) 
becomes 
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QU 02U / / 1 - 0 ~  2 
8t - 8y2 + ° ) ~ s ~ s J '  s ( t ) < y <  1 (15) 

subject to 

0U 
U =  l a t ) , = s ( t )  and + B i U = O  at y =  1. ?y 

(16) 

The initial condition for U again originates from equa- 
tion (10). 

3.2.3. Potential 0(0 .  The quantities s(t) and 0 (0  are 
related. At y = s(t) we assume continuity of potential 
gradient, 

06 

and using the solutions (11) and (14) obtain 

s 
0 - 6 + ( 1 - 6 ) s  (17) 

in which se[0,  1] ~ 0 e [ 0 ,  1], s(to) = 0 and s(tl) = 1. 
In equations (12) and (15), 

( ~ )  1 ( l l~s~) 6 
= 6 + ( 1 - 6 ) s  and = 6 + ( 1 - 6 ) s "  

The denominator  is positive for all s t  [0, 1] and so the 
heating terms are bounded. 

3.3. Hot phase : t > t~ 
Now s(t) = 1 and all points y~  [0, 1] are above Uc. 

Also, g = 6 and the solution to equations (6)-(8) is 
q~(y, t) = y, 0 ~< y ~< 1. Thus, Oc~/~y = 1 and equation 
(1) becomes 

c~U 02 U 
- +~o6, 0 < y <  1 (18) 

63t ay 2 

subject to the boundary conditions (4) and (5). The 
initial condition is described, at t = tl, by the spatial 
distribution of U at the end of the warm phase. In 
theory there exists a Fourier-type solution to this 
problem. However, in practice, the unknown form of 
the temperature profile at the end of the warm phase 
precludes an analytic determination of the Fourier 
coefficients. 

3.4. InterJace s(t) 
We still have to track s(t). With no latent heat of  

fusion, characteristic of phase-change problems, the 
usual Stefan condit ion is not available to drive the 
interface. We have what is known as an implicit free- 
boundary problem [14]. For  the present problem, the 
condition 

U(s(t),t) = 1, to < t < t, 

can be used to determine an ordinary differential equa- 
tion that governs the motion of s(t) (Section 4). 

3.5. Steady-state solutions 
As indicated in Section 2.1, any one of the cold, 

warm or hot phases may contain the steady-state situ- 
ation. The particular configuration is governed by 
the acceptable values of s (or 0) ,  which are in turn 
determined by the relative values of ~o, Bi and 6. In 
this case the dimensionless model described so far 
degenerates to the one-dimensional problem pre- 
sented in [11] (with ~o and Bi replaced by the symbols 

and fi~, respectively). If o~ ~< 2Bi/(2 + Bi) we obtain 
the cold solution (s* = 0) 

2 z 
q~*(y) = y, 0 ~ < y ~ < l .  

(19) 

Clearly, if ~o/> 2 a hot region must appear no matter 
how large the cooling coefficient Bi. If  ~o6 > Bi we 
obtain the hot solution (s* = 1) 

u * O , ) =  ~ l + B i - - y -  , O * ( y ) = y ,  O~<y~<l .  

(20) 

If09(2 + Bi) > 2Bi >~ 2o96 we obtain the warm solution 

U*(y) = 1 + ~ -  (0 *2 --4) .2) z 

0*Y 
~b*(y) = s* ' O~<y~<s* (21) 

and 

(D 
V*(y) = 1 + 2(O*~-q~ *~) 

( 1 - - 0 * ) Y + 0 * - s *  s*~<y~< 1 (22) 
4~*(Y) = 1 - s *  ' 

in which s* e (0, 1] and 0"  e (0, 1] are the steady-state 
values of s(t) and 0(0-  Continuity of the potential 
gradient at s* yields the relation 

0*6 
s* = - (23) 

1 --(1 --6)0* 

which necessarily implies continuity of the tem- 
perature gradient at y = s*. Condit ion (5) yields the 
quadratic equation 

2 - ,  2 2 
(0")2-~-Bi(1--6)~) - ~ - ~ - - l - - ~ i =  0 

from which 0", and hence s* [equation (23)], can be 
evaluated in the case of a warm steady-state. 

4. A HEAT BALANCE INTEGRAL SOLUTION 

The heat balance integral (HBI) method [15] aims 
to construct a solution that satisfies the governing 
differential equations in an 'average' sense over the 
entire solution domain. The approach has been used 
to obtain small-time solutions for multi-dimensional 
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Stefan problems [16, 17]. Higher precision may be 
obtained by using sub-division of the solution domain 
[18]. 

The HBI solutions are constructed by assuming a 
quadratic form for the temperature profile that sat- 
isfies both boundary conditions and an integral form 
of the governing conduction equation. An appropriate 
quadratic satisfying conditions (4) and (5) is 

U(y,t) = a ( y 2 -  1 -  B~ ) (24) 

in which a is a function of time (to be determined). 

4.1. Coldphase: 0 ~< t ~< to 
Integrating equation (9) over 0 ~< y ~< 1 we obtain 

the heat balance integral 

fi' v l' 
--~-dy = Layjo+O 

and, utilizing equation (24), can generate a first-order 
ordinary differential equation (ODE) for a, 

2(Bi+ 3) da 
- 2 a  = ~o ( 2 5 )  

3Bi dt 

subject to a(0) = 0 [equation (3)]. Equation (25) can 
be solved exactly to give 

U(y,t)=2(exp[-_ 3Bitl_l~ 
[_ B i + 3 J  ] 

The boundary temperatures 

u(o, t) - 
aJ(Bi+2) ( [ 3Bit l )  

2Bi 1 - e x p  - Bi+3JJ 

2 
and U(1, t) = B ~  U(0, t) 

u(0, t) > satisfy the physical requirement that 
U(1, t). Further 

~o(Bi+ 2) 
lira U(0, t) = 
, ~ ~, 2Bi 

An all cold stead&state solution exists only if this 
expression is bounded by Uc, i.e. if o9 ~< 2Bi/(Bi+2). 
This is precisely the condition given in ref. [11] and 
(26) then takes the form of the exact steady-state 
solution (19). 

I f ~  > 2Bi/(Bi-~2) then U(0, t) will reach Uc = 1 in 
a time 

=__('Bi+3~ ( 1 -  2Bi _~ 
to \ ~ ]  In o9(Bi+2)] 

with an associated temperature distribution 

Biy 2 2 
U(y, to)= 1 Bi+2'  0~<y~< 1, U(1 , t0)=Bt~/~ .  

4.2. Warm phase: to < t ~< t~ 
Using the heat equations (12) and (15) and inte- 

grating over 0 ~< y ~< 1 we obtain 

ii u = [ vl, + w a y  L~Jo 
I~o o)6dy+ I~ 096 2 dy 

(6 + (1 - 6 )s )  2 

Substitution of the profile equation (24) gives the 
ODE 

2(Bi+ 3) da o96 
2a (27) 

3Bi dt 6 + ( 1 - 6 ) s "  

The time dependence ofs renders impossible the deter- 
mination of a particular solution for this equation and 
so we use a numerical procedure (Section 5). The 
boundary condition U(s(t), t) = 1 implies 

1 
a 2 (28) 

S 2 - -  1 - -  - -  

Bi 

and, with the change of variable z = s 2, equation (27) 
is transformed into an equation for the moving bound- 
ary 

in which 

d z  

= p(z) z(to) = 0 (29) 

3Bi f 2 ) 
p(z) = 2(Bi+3) k z -  1 -  ~/  

× 2 + 6 + ( l _ 6 ) x / z  z - l -  . 

At any time, s = x/z, ~ = 2/28, " = d/dt and a is given 
by (28). Thus, a complete description of the thermal 
behaviour is available until either (i) a steady-state 
situation is reached in which , l i jnje(0,  1) or (ii) s 

becomes equal to 1 and the problem enters a hot 
phase. A steady-state will occur if ~, and hence 2, 
equals zero. From equation (29) we obtain 

s * =  -1+_ 1 (1--6) 2 

×(2 
~i  -/j  j 

Clearly s* > 0, since o9 > 2Bi/(Bi+2), and 1 - 6  > 0 
so we take the positive root. The inequality s* ~< 1 
leads to the necessary condition 096 <~ Bi and so the 
conditions for a warm steady-state configuration 
agree with [11]. 

If ~o6 > Bi, s(t) becomes equal to 1 at a time t~ 
[obtained numerically from equation (29)] and the 
entire region becomes hot in the steady-state limit. We 
have a(tO = - B i / 2  from which U(O,t 0 = l+Bi/  
2, ' U(1,t~) = 1 and 
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U(y,t,) = -- ~ Bi 0~<y~< 1. (30) 

4.3. Hot phase : t > t~ 
Integrating equation 08)  over 0 ~< y ~< 1 and using 

the profile equation (24), the HBI method gives a 
similar ODE to that of the cold phase [equation (25)] 
with ~o replaced by e~6 : 

2(Bi+ 3) da 
2a = co5. 

3Bi dt 

The general solution is 

U(y,t) = (k  exp [ -  Bi + 3 t l -  ~°6~2 ] 

x y 2 - 1 - ~ i  , 0~<y~< 1. (31) 

At t = t~ the warm and hot solutions, equations ( 3 0 )  

and (31), must be continuous,  from which the con- 
stant k can be found giving 

1 ( ( o ~ _ B i ) e x p  [ 3Bi(t-tl)TB~ .j--ogoj~'~ uo' , t )  

x y 2 - 1 - ~  0 ~ < y ~ l .  

The boundary temperatures are 

/Bi + 2\ / 

[ 3Bi(t-_t,)~) 2 
x e x p -  Bi+3 JJ' U( l ' t )=Bi+2U(O' t )  

and the hot steady-state form is identical to the exact 
profile equation (20). 

5. NUMERICAL EXPERIMENTS AND 
DISCUSSION 

It is a simple matter to choose values of ~o, Bi and 
6 and to evaluate the temperature profiles of Section 
4. We shall use a value of 6 = 10 -5 in the numerical 
simulations of this section. The only complications 
that may arise will be in solving equation (29) numeri- 
cally (if a warm phase exists). 

We shall compare the HBI solution to the problem 
tackled by Fowler et al. [5] which uses equation (2b) 
to define the electrical conductivity. In order that 
g(U) = 6 for U > 1 +AU,  to be consistent with the 
step function (2a), we use the value 

0.2 
= i ~  (,-- 0.087). 

In ref. [5] the value AU = 1 is used. To summarise 
their one-dimensional model, integrating equation (6) 
with respect to y gives 

a(O c(t) 
(32) 

OY g 

A further integration produces 

c~(y, t) = -dy  = c(t) exp dy 
.Jog jo 

and since ¢(1, t) = l, for all t > 0, then 

Using equation (32), the governing heat flow equation 
(1), becomes 

Ot Oy 2 \ e ]  

(33) 

It is a simple matter to construct an explicit numerical 
solution scheme based on finite differences, namely 

u? +~ = um +Atft m, 

um Ui+,-- Ui + i ~ +mc2exp 
(Ay) 2 

The interval 0 ~< y ~< 1 is divided into n equal cells of 
size Ay = l/n, At is a time step and u m ~- U(yi, tm). 
The value of At is determined by a heuristic stability 
argument based on ensuring positive values of 8 U/St. 
The value of AU is critical, and this aspect will be 
explored later in this section. 

5.1. HBI solution : cold steady-state 
For a cold steady-state solution the values ~o = 0. l, 

Bi = 0.2 suffice. Figure 2(a) shows the evolving tem- 
perature profile on 0 ~< y ~< 1 and Fig. 2(b) shows the 
behaviour of the boundary temperatures. 

These figures are typical of  a problem evolving to a 
cold steady state. Different values of co and Bi, still 
satisfying the inequality og<2Bi/(2+Bi), simply 
serve to alter the time taken to attain a practical steady 
state. Clearly there is no evidence of either high flux 
values or rapid rates of change of temperature that 
may initiate cracking. Indeed, max IO(y,t)l = 
1 0(0, 0)[ = 3, under cold steady-state conditions. This 
agrees with Veen's conclusions [3]. 

5.2. HBI solution : warm steady-state 
The values ea = 0.5 and Bi = 0.2 will give a warm 

steady-state. Figure 3(a) shows a similar evolving tem- 
perature profile to the cold problem with no evidence 
of high fluxes. Figures 3(b) and (c) show the evolving 
behaviour of the boundary temperatures, and clearly 
there are no particularly rapid changes in temperature. 
Once in the warm phase the solution reaches its 
steady-state extremely quickly, in a time t = 2 x 10 -9, 
as compared to the durat ion of the cold phase, to = 
2.4. This reflects the behaviour of the interface s(t) 
(and potential q~) shown in Fig. 3(d). 



A heat balance integral model of the thermistor 1837 

(a) 

I -  

0,6 . . . . . .  : . . . . .  : . . . . .  : •  H : . . . .  : . . . . . .  : . . . . . . . . . . . . . . . . .  . . . . . .  
: ! : : 

0.5 

o.4: 

0.2 

0.1 

0,0 

, ' z=]u  
• . . . . . :  . . . . . . . . . . . .  . . . , , ,  . . . . . . . . .  . 

: : - ,  , : • : . .  : : . - - .  

. . . . .  ~ : ~ . . - t = 3  

: : ~ t = 2  

i ! i ! i i t =  1 

i . . . . . . . . . . . . .  i . . . . . . . . .  : . . . . . . . . .  i . . . . .  

0.0 0.2 0.4 0.0 0.8 1.0 

Distance, y 

0.6 ...... ~ ...... i ....... ......... 0.12 

(b) 
..... ........................... o.~ o 0 . 5  

f f  - u(o.o 0 . 0 6  
0 .3  ~ .~ "  I - - - ~ , .  - • U (1 , t )  : 

- .  ¢ l l J ( 1 , t ) / d !  I : : 

0.2 0.04 

0.1 0.02 

0.O 0 . 0 0  
0 10  20  30 4O 

Time, t 

Fig. 2. (a) Temperature profile evolving to a cold steady- 
state and (b) evolving boundary temperatures. 

T h e  di f ferent ia l  e q u a t i o n  (29) was  so lved  us ing  
Eu le r ' s  m e t h o d .  T h e  very  fas t  ini t ia l  speed  2 does  no t  
cause  p r o b l e m s  a n d  the  b o u n d a r y  s(t) r ap id ly  a n d  
s m o o t h l y  reaches  its s t eady- s t a t e  value.  

5.3. HBI solution: hot steady-state 
The  va lues  o) = 100000  a n d  Bi = 0.2 give a h o t  

s teady-s ta te .  T h e  t e m p e r a t u r e  profi les  s h o w n  in Fig. 
4 (a )  aga in  d i sp lay  smal l  fluxes. H o w e v e r ,  t he  tem-  
p e r a t u r e  changes  d u r i n g  the  co ld  phase ,  s h o w n  in Fig.  
4(b) ,  are ex t remely  high.  T h e  g r a d i e n t s  o f  the  two  
lines are  U(0, t) ~ 1.03 x l0  s a n d  (_?(1, t) -~ 0.94 x 105. 

Essent ia l ly  the  t h e r m i s t o r s '  en t i re  t e m p e r a t u r e  profi le  
is ' l i f ted '  very  rapidly ,  i.e. a temperature surge. Clear ly ,  
here  is a m e c h a n i s m  for  in i t i a t ing  c racks  in the  ce ramic  
c rys ta l  s t ruc ture .  

Th i s  ra te  o f  c h a n g e  rap id ly  tails off  d u r i n g  the  s h o r t  
w a r m  p h a s e  [Fig. 4(c)] a n d  we obse rve  the  expec ted  
e x p o n e n t i a l  a p p r o a c h  to  a s t eady-s t a t e  in the  h o t  
p h a s e  [Fig. 4(d)] .  

T h e  r ap id  t e m p e r a t u r e  changes  seen a b o v e  will 
cause  stress bu i ld  up  in the  m i c r o - s t r u c t u r e  o f  the  
t he rmis to r .  T h e  ce ramic  m a t e r i a l  o f  the  t h e r m i s t o r  is 
qu i te  br i t t le  a n d  t ends  to suffer m i c r o - s t r u c t u r a l  
c racks  w h i c h  will c o n c e n t r a t e  the  t h e r m a l  s t resses  a n d  
p e r h a p s  lead to  c r ack  p r o p a g a t i o n .  Stress  analys is  
shows  t h a t  i f  t h e r m a l  e x p a n s i o n  is p r e v e n t e d  whi le  
h e a t i n g  a ce ramic  b o d y  f r o m  a t e m p e r a t u r e  Ta to  a 

(a) 

~d  

E 
I - -  

( c )  

1.0 ! ~ t - 2 . 4 1  

o.8 ~ . . . .  ~ - i  i ...... 

0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . .  : 

. . . . . . .  i - ? . . . . . . . . . . . . . . . . .  
0 . 4  : . . . . . .  i i . . . . . .  ~ 

. . . . . .  ! . . i ~ t = 0 . 7 2  

: : : ~ t - 0 . 4 8  
0.2 : : : : : . . . . . . . . . . . . . . . . .  : . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . .  i . . . . . .  i t = 0 . 2 4  

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

Distance, y 

1.2 

(b) 
1.0 

0.8 
: : )  

0,6 

~. o.4 

0,2 

0 . 0  

. . . .  . . . . .  . . . . . . . . . .  • . . . . . . . .  0.6 

:'~::~i:: i ...... ..... ! ..... :::~ .... :: ...... ...... i ..... [0.s i 
. . . . . .  . . . . . .  i :  . . . . . .  . . j . - . < : i ~  . . . .  0.4 

I u(00 I ~ - - ~ .  " ' ~  : - ? ' - "  1 v.o 

:: ..!:" ...... :. . . . . . .  . . . . .  i . . . . . .  i . . . . . .  i . . . . .  o.t ~- 

t00 
0.0 0.5 1.0 1.5 2.0 2.5 

C o l d  Phase Time, t 

.... -~; .............. iiiiiiii iii i oo~s 
/~, .  :: I ,~o,,)~= ...... : ...... , 
/ ~ :  ] ...... au0.t)/at I : : : : / 

o o , i  .... ..... ...... i , o o o o  
0.0 0.4 0.8 1.2 1.6 2.0 

W a r m  Phase Time (xl 0 9 ) ,  t 

.~ (d) 

• ~ 

E ~ 

2.0 1.5 • . . . .  qo 
: i i ! i 

1.6 1.2 ~ 

t.2 , o.o 

: : : : m 

iiiiiiiiiiiiiiiiiiii - -  i i °'° 

0.4 ' ,  i . . . . .  ! . . . . . .  . . . . . .  i i i : i 0.3 = 
:>L i ...... • i : : i : 

o.o . . . .  i .... i ..... ~....~._._~ ........ o.o 

0.0 0.4 0.8 1.2 1.6 2.0 

Warm Phase Time (x109), t 

Fig. 3. (a) Temperature profile evolving to a warm steady-state, evolving boundary temperatures during 
(b) the cold phase, (c) the warm phase and (d) evolving interface location during the warm phase. 
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temperature TB then a compressive stress a results 
given by [19] 

E;,(T. - TA) 
¢ 7 - -  

1--v 

If the fracture stress ar is known then the expression 

O ' f ( 1  - -  Y )  

ATf (34) E~ 

determines the largest rapid change in temperature 
that a material can withstand without suffering severe 
structural damage [19]. A typical PTC thermistor is 
made from barium titanate, BaTiO3, which has the 
material properties af = 2 .4x  10 7 N m ~, v = 0.24, 
E = 2 . 4 x 1 0 1 °  N m 2 7 = 7 × 1 0 - 6  K - I  and 

= 1.6 x 10 6 m 2 s- l .  Equation (34) gives a maximum 
temperature change of  108.6°C. For  the above hot 
steady-state case, during the cold phase of  duration 
At = 9.7 x 10 -6, the temperature rises by AU = 1. 
Using the change of  variables of  Section 2 and a typi- 
cal thermistor half-length of  l = 4 x 10 -3 m, the cold 
phase lasts for 

lZAt 
A t - -  - 9 .5x  10 5s. 

x 

If  the ambient temperature is T, = 20°C and the criti- 
cal switching temperature is Tc = 120°C then the 
physical temperature increase is 100°C. Thus, thermal 
shock failure may occur, particularly if  Ta is much less 
than 20°C. 

5.4. H B I  step model vs Fowler's exponential model [5] 
In this section we make a brief comparison of  the 

step and exponential models. The numerical scheme 
used n = 10 spatial cells of  size Ay = 1/10. Appro-  
priate results are presented in tabular form. 

For  the cold steady-state (~o = 0.1, Bi = 0.2) there 
is little difference. This is not  surprising since, for an 
all cold region 0 ~< y ~< 1, g(U) = 1 for both models. 
We have already seen that the HBI solution 
approaches the analytic quadratic steady-state solu- 
tion. The steady-state criterion requires both 

1 I [g-)(y=0)] < ~ x l 0  8 and [ U ( y =  1)[ < ~ x l 0  -s. 
Both numerical steady-state profiles agree with the 
exact formula (19) to seven decimal places. The only 
marked difference is the time to attain steady-state. 
For  the HBI model, t~ = 90 and for the exponential 
model  t~ = 81. 

For  a warm steady-state (o9 = 0.5, Bi = 0.2) both 
models provide very similar predictions for the time 
at which the cold phase ends ( t 0 (HBI )=  2.411, 
t0([5]) = 2.414) and for the temperature profile at this 
time (see Table 1). However,  for the subsequent evol- 
ution to a warm steady-state there is a marked differ- 
ence in the two models (see Table 1). The HBI model 
is close to the exact steady-state step solution whilst 
the exponential solution predicts temperature values 
some 10% higher. 

For  the hot  steady-state (o9 = 100 000, Bi = 0.2) the 
steady-state predictions of  both models are once more 
very similar and agree with the exact profile (20) to 
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Table 1. Step HBI and numerical exponential [5] temperature predictions for a warm 
steady-state (e~ = 2.78 × 10 -H, e2 = 6.41 x 10 -9) 

End of cold phase Warm steady-state 
y Step HBI [51 Step HBI [5] 

0.0 1.0 1.0 1 +el 1.11656 
0.2 0.99636 0.99656 0.99636 1.11055 
0.4 0.98545 0.98617 0.98545 1.09328 
0.6 0.96727 0.96870 0.96727 1.06676 
0.8 0.94182 0.94390 0.94182 1.033376 
1.0 0.90909 0.91144 0.90909 0.99529 

to = 2.411 to = 2.414 t~ = t0+z2 t~ = 9.434 

Table 2. Step HBI and numerical exponential [5] temperature predictions for a hot steady-state 
(el = 0.97 x 10 -5, ~2 = 1.0x 10 5) 

End of cold phase End of warm phase Hot steady-state 
y Step HBI [5] Step HBI [5] Step HBI [5] 

0.0 1.0 1.0 1.1 2.21501 5.5 5.5 
0.2 0.99636 1.00000 1.096 2.20581 5.48 5.48 
0.4 0.98545 1.00000 1.084 2.17849 5.42 5.42 
0.6 0.96727 1.00000 1.064 2.13400 5.32 5.32 
0.8 0.94182 1.00000 1.036 2.07388 5.18 5.18 
1.0 0.90909 1.00000 1.0 2.0 5.0 5.0 

to = ~1 to = ~z t~ = 0.743 tl = 0.294 t~ = 10l t~ = 91 

seven decimal places. Fo r  this si tuation,  bo th  models  
prescribe an  electrical conduct ivi ty  9 equal  to 3. The 
steady-state times are different, t~ (HBI)  = 101 and  
t~([5]) = 91, and  the routes taken to reach this poin t  
are quite different (see Table  2). Of  course, the radical  
difference in the models  concerns  the warm stage 
which (a) has  an  exponent ial ly  varying electrical con- 
ductivity and  (b) is defined over a fixed tempera ture  
range U~ [1, 1 +AU] .  

In the limit as AU approaches  zero, so the exponen-  
tial model  (2b) approaches  the step funct ion model  
(2a). However,  there is a critical value of  AU below 
which a numerica)  solut ion is extremely difficult, if 
no t  impossible,  to obtain.  It is precisely this case for 
which the HBI  me thod  works so well. Fo r  the general 
case A U >  0, a purely numerical  solution would 
appear  to be the only t ractable  approach.  Exper iment  
shows tha t  the critical value of  A U to be abou t  
0.11657, below which a numerical  solut ion fails. Fail-  
ure occurs in the sense that ,  as AU --* 0, so extremely 
small t ime steps are required dur ing the warm phase 
to satisfy the heuristic stability model  discussed pre- 
viously. 

6. CONCLUSIONS 

We have shown how a simple funct ional  approxi-  
ma t ion  can be used to model  one par t icular  thermis tor  
problem.  All the physical characterist ics are satisfied 
and  the vastly differing t ime scales and  spatial  scales 
of  the p rob lem are readily accounted for. Fur ther ,  
even with such a simple model  (one-dimensional  with 
cons tan t  potent ia l  difference), the solut ion process has 

extracted in format ion  which may suppor t  the idea 
tha t  the cracks observed in some thermistors  may 
be due to extremely rapid changes in tempera ture  as 
opposed to large (spatial) t empera ture  gradients.  This 
is most  likely to occur when  the heat ing term c0 is 
sufficiently large, resulting in a ho t  steady-state. This 
is in line with the temperature-surge hypothesis  of  
Fowler  et al. [5] who used the exponent ia l  con- 
ductivity model  to obta in  the asymptot ic  behav iour  
of  the thermis tor  ( including an  external  curcuit).  
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